Comparison of Capacity Retention Rates During Cycling of Quinone-Bromide Flow Batteries
نویسندگان
چکیده
We use cyclic charge-discharge experiments to evaluate the capacity retention rates of two quinone-bromide flow batteries (QBFBs). These aqueous QBFBs use a negative electrolyte containing either anthraquinone-2,7-disulfonic acid (AQDS) or anthraquinone-2-sulfonic acid (AQS) dissolved in sulfuric acid, and a positive electrolyte containing bromine and hydrobromic acid. We find that the AQS cell exhibits a significantly lower capacity retention rate than the AQDS cell. The observed AQS capacity fade is corroborated by NMR evidence that suggests the formation of hydroxylated products in the electrolyte in place of AQS. We further cycle the AQDS cell and observe a capacity fade rate extrapolating to 30% loss of active species after 5000 cycles. After about 180 cycles, bromine crossover leads to sufficient electrolyte imbalance to accelerate the capacity fade rate, indicating that the actual realization of long cycle life will require bromine rebalancing or a membrane less permeable than Nafion® to molecular bromine.
منابع مشابه
High-capacity aqueous zinc batteries using sustainable quinone electrodes
Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capaci...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملHigh capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.
A Sb/C nanocomposite was synthesized and found to deliver a reversible 3 Na storage capacity of 610 mA h g(-1), a strong rate capability at a very high current of 2000 mA g(-1) and a long-term cycling stability with 94% capacity retention over 100 cycles, offering practical feasibility as a high capacity and cycling-stable anode for room temperature Na-ion batteries.
متن کاملManganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries.
Potential applications of sodium-ion batteries in grid-scale energy storage, portable electronics and electric vehicles have revitalized research interest in these batteries. However, the performance of sodium-ion electrode materials has not been competitive with that of lithium-ion electrode materials. Here we present sodium manganese hexacyanomanganate (Na2MnII[MnII(CN)6]), an open-framework ...
متن کاملBinder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کامل